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Abstract. Using the Born expansion of the Green tensor, we consider the spontaneous decay rate of an
excited atom placed in the vicinity of a rectangular plate. We discuss the limitations of the commonly
used simplifying assumption that the plate extends to infinity in the lateral directions and examine the
effects of the atomic dipole moment orientation, atomic position, and plate boundary and thickness on the
atomic decay rate. In particular, it is shown that due to the plate finite size, the spontaneous decay may
be inhibited even when the atom is situated very close to the surface, and that in the boundary region,
the spontaneous decay rate can be strongly modified.

PACS. 42.60.Da Resonators, cavities, amplifiers, arrays, and rings – 32.80.-t Photon interactions with
atoms – 42.50.Nn Quantum optical phenomena in absorbing, dispersive and conducting media – 42.50.Pq
Cavity quantum electrodynamics; micromasers

The ability to control the spontaneous decay process
holds the key to powerful applications in micro- and
nano-optical devices. Effective control can be achieved
by tailoring the environment surrounding the emitters. In
theoretical analysis of surrounding environment of differ-
ent geometries, the most interesting ones being of the res-
onator type, the boundary conditions are typically taken
into account only in directions in which the electromag-
netic field is confined or affected the most. For example,
in a planar configuration, only the boundary conditions
in the normal direction are taken into account while those
in the lateral directions are neglected (see, e.g., Ref. [1]).
In a cylindrical configuration that extends to infinity, the
reverse is true [2]. Under appropriate conditions, these ap-
proximations are generally valid. However, as the sizes of
devices decrease and fall in the micro- and nano-meter
ranges as in the current trend of miniaturization, it is
clearly of great importance to keep track of the effects
of all boundaries. One way to calculate the spontaneous
decay rate in an arbitrary geometry is to directly solve the
Maxwell equations using the finite difference time domain
method [3]. This method, which relies entirely on numer-
ical computation, is not without weaknesses. It requires
that the whole computational domain be gridded, leading
to very large computational domains in cases of extended
geometries, or in cases where the field values at some dis-
tance are required. All curved surfaces must be modeled
by a stair-step approximation, which can introduce errors
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in the results. Additionally, the discretization in time may
be a source of errors in the longitudinal field [3].

Here we employ an approach that, in a sense, com-
bines analytical and numerical calculations, thereby sig-
nificantly reducing the numerical computation workload.
This approach relies on first writing the atomic decay rate
in terms of the Green tensor characterizing the surround-
ing media [4,5]. Although this formula holds for arbitrary
boundary conditions, exact analytical evaluation of the
Green tensors for realistic, finite-size systems can be very
cumbersome or even prohibitive. Following [6,7], where
the atom-body van der Waals force and the local-field cor-
rection, respectively, have been considered, we circumvent
the task of an exact calculation of the Green tensor by
writing it in terms of a Born series and restrict ourselves
to leading-order terms. The boundary conditions enter the
theory only via the integral limits. This approach is uni-
versal in the sense that it works for an arbitrary geometry
of the surrounding media, and can be used to evaluate any
characteristics of the matter-electromagnetic field interac-
tion expressible in terms of the Green tensor. In this paper,
we are concerned mostly with the spontaneous decay rate
of an excited atom placed near a rectangular plate. Our
aim is twofold: first, we compare our results with those
for an infinitely extended plate in order to establish in a
quantitative way the conditions under which the approxi-
mation of an infinitely extended plate is valid; second, we
examine the effects brought about by the presence of the
boundaries in the lateral directions.
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The (classical) Green tensor of an arbitrary dispersing
and absorbing body satisfies the equation

ĤG(r, r′, ω) = δ(r − r′)I, (1)

Ĥ(r) ≡ ∇ × 1
µ(r, ω)

∇ ×−ω2

c2
ε(r, ω), (2)

(I-unit tensor) together with the boundary condition at
infinity, where ε(r, ω) [µ(r, ω)] is the frequency- and space-
dependent complex permittivity (permeability) which
obeys the Kramers-Kronig relations.

Decomposing the permittivity and permeability as

ε(r, ω) = ε̄(r, ω) + χε(r, ω), µ(r, ω) = µ̄(r, ω) + χµ(r, ω),
(3)

and assuming that the solution Ḡ(r, r′, ω) to the equation
ˆ̄H(r)Ḡ(r, r′, ω) = δ(r − r′)I, where ˆ̄H is defined as in
equation (2) with ε̄ instead of ε and µ̄ instead of µ, is
known, the Green tensor G can be written as

G(r, r′, ω) = Ḡ(r, r′, ω) + G′(r, r′, ω). (4)

Substituting equation (4) into equation (1) and using the
identity (µ̄ + χµ)−1 = µ̄−1

∑∞
l=0(χµ/µ̄)l, it can be found

that

Ĥ(r)G′(r, r′, ω) = Ĥχ(r)Ḡ(r, r′, ω) ≡ G̃(r, r′, ω) (5)

Ĥχ(r) ≡ −∇ × 1
µ̄(r, ω)

∞∑

l=1

χl
µ(r, ω)

µ̄l(r, ω)
∇ × +

ω2

c2
χε(r, ω),

(6)

i.e., G′ satisfies the same differential equation as the
one governing the electric field, with the current be-
ing equal to G̃. Hence it can be written as a convo-
lution of this current with the kernel G: G′(r, r′, ω) =∫

d3sG(r, s, ω)G̃(s, r′, ω). Substitution of G′ in this form
in equation (4) and iteration lead to the desired Born se-
ries

G(r, r′, ω) = Ḡ(r, r′, ω) +
∞∑

k=1

Gk(r, r′, ω), (7)

Gk(r, r′, ω) =

(
k∏

j=1

∫

d3sj

)

× Ḡ(r, s1, ω)G̃(s1, s2, ω) · · · G̃(sk, r′, ω) . (8)

This formal expansion for the Green tensor is valid for
an arbitrary geometry, permittivity, and permeability of
the macroscopic bodies. Obviously, one of the situations
in which the Born series is particularly useful is when
χε is a perturbation to ε̄ and χµ is a perturbation to µ̄,
thereby one makes only a small error cutting off higher-
order terms. For such weakly dielectric and magnetic bod-
ies, it is natural to choose

ε̄(r, ω) = µ̄(r, ω) = 1 (9)

with χλ(r, ω)= χλR(r, ω) + iχλI(r, ω), |χλ(r, ω)| � 1
(λ = ε, µ) [cf. Eqs. (3)]. This implies we restrict ourselves
to frequencies far from a medium resonance.

The Green tensor Ḡ corresponding to ε̄(r, ω) =
µ̄(r, ω) = 1 is the vacuum Green tensor

Ḡ(r, r′, ω) = −δ(u)
3k2

I +
k

4π
(aI − bû ⊗ û)eiq, (10)

a ≡ a(q) =
1
q

+
i

q2
− 1

q3
, b ≡ b(q) =

1
q

+
3i

q2
− 3

q3

(11)

(k = ω/c; u≡ r − r′; û = u/u, and q≡ ku).
A description of quantities such as the emission pat-

tern or the interatomic van der Waals forces requires the
knowledge of the Green tensor of different positions, while
a description of quantities such as the spontaneous decay
rate of an excited atom or the atom-body van der Waals
forces requires the knowledge of the Green tensor of equal
positions. Substituting equation (10) in equation (8) and
assuming that the position r lies outside the region oc-
cupied by the macroscopic bodies, we derive for the first-
order term in the Born expansion of the equal-position
Green tensor

G1(r, r, ω) =
k2

16π2

∫

d3s Ĥχ1(s)

× [a2I + (b2 − 2ab)û⊗ û]e2iq (12)

[u ≡ r − s; q = ku; a = a(q); b = b(q); Ĥχ1(r) ≡ −∇ ×
χµ(r, ω)∇ × +ω2

c2 χε(r, ω) – linear part of Ĥχ, Eq. (6)].
Higher-order terms can easily be obtained by repeatedly
using equation (10) in equation (8).

Our system consists of an excited two-level atom sur-
rounded by macroscopic media, which can be absorbing
and dispersing. In the electric-dipole and rotating-wave
approximations, the atomic decay rate reads as [4,5]

Γ =
2k2

A

�ε0
dAIm G(rA, rA, ωA)dA, (13)

where dA and ωA are the atomic dipole and shifted tran-
sition frequency, kA = ωA/c, and G is the Green tensor
taken at the position of the atom and at the atomic tran-
sition frequency.

In accordance with the linear Born expansion, equa-
tions (7), (10), and (12) yield, for a purely electric mate-
rial,

Γ ‖(⊥)

Γ0
= 1 +

3k3
A

8π
Im

{∫

d3s χε(s, ωA)

×
[

a2 + (b2 − 2ab)
1
u2

(x − xA)2

(z − zA)2

]

e2iq

}

(14)

[Γ0 = k3
Ad2

A/(3π�ε0) – free-space decay rate, s = (x, y, z),
u = |s−rA|, q = kAu, a = a(q), b = b(q)] for x-(z-)oriented
dipole moments. Equations (14) are our main working
equations. Just like the Born expansion of the Green ten-
sor, they hold for an arbitrary geometry of the surrounding
environment.
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Fig. 1. A dipole emitter in
the vicinity of a rectangular
plate.

Next let us be specific about the shape of the macro-
scopic bodies. We consider a rectangular plate of dimen-
sions dx, dy , and dz and choose a Cartesian coordinate
system such that its origin is located at the center of one
surface of the plate, as sketched in Figure 1. Then Γ ‖ rep-
resents the spontaneous decay rate of a dipole moment
parallel to a plate surface and Γ⊥ – that of a dipole mo-
ment normal to the same surface.

With the integral limits in equation (14) specified,
one can use the stationary phase method to obtain (Ap-
pendix A)

Γ ‖(⊥)

Γ0
� 1 +

3k3
A

8π
Im

[

χε

∫ dz

0

dz
a2

(a − b)2
e2iqz

×
∫ dx

2

− dx
2

dxeik2
A(x−xA)2/qz

∫ dy
2

− dy
2

dy eik2
A(y−yA)2/qz

]

(15)

[a = a(qz), b = b(qz), qz = kA(z + zA)], provided that
− dx

2 ≤ xA ≤ dx

2 and − dy

2 ≤ yA ≤ dy

2 . In the particular
case of xA = yA = 0, equations (15) become

Γ ‖(⊥)

Γ0
� 1 +

3k3
A

2π
Im

[

χε

∫ dz

0

dz
a2

(a − b)2
e2iqz

×
∫ dx

2

0

dxeik2
Ax2/qz

∫ dy
2

0

dy eik2
Ay2/qz

]

, (16)

where the integrals over x and y contain Fresnel integrals
[8]. For small lateral sizes such that dx, dy � √

zA/λA λA,
using the series expansions of the Fresnel integrals [8] and
keeping only the leading terms, we derive the following
expressions

Γ ‖(⊥)

Γ0
� 1 +

3k3
A

8π
dxdyIm

[

χε

∫ dz

0

dz
a2

(a − b)2
e2iqz

]

,

(17)

which indicate a linear dependence of the decay rates on
dx and dy. Obviously, both Γ ‖ and Γ⊥ approach the free-
space value as dx and/or dy tend to zero. In what follows,
we resort to numerical computation.

In Figure 2 we present the spontaneous decay rate in
accordance with the linear Born expansion (14), as a func-
tion of the atom-surface distance for two different values
of the permittivity. The same quantity but for an atom
placed near an infinitely extended planar slab is plotted
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Fig. 2. Atom-surface distance dependence of the normal-
ized spontaneous decay rate of an excited atom positioned at
(0, 0, zA) near an infinite planar plate (solid line) and a rect-
angular plate (dx = dy = 10λA, dashed line) of equal thickness
dz = 0.2λA and equal χε = χεR + i10−8. Case (a) is for a
x-oriented dipole moment, while case (b) is for a z-oriented
dipole moment.

using the Green tensor given in reference [9]. It can be
seen that when the lateral dimensions of the rectangu-
lar plate are sufficiently large and the absolute value of
the permittivity is sufficiently close to one (the case of
χε = 0.1 + i10−8 in the figure), the two results almost
coincide for both dipole moment orientations. As χεR in-
creases, the agreement worsens but is still quite good at
χεR = 0.5. Further computations indicate that in the
range of |χε(ωA)| � 0.5, the spontaneous decay rate can be
well approximated by the linear Born expansion, and we
shall stay within this range in numerical examples given
below. In Figure 2, the atom has been moved along the
z-axis with xA = yA = 0. When the atom is moved along
other lines parallel to the z-axis but nearer to the border,
the zA-dependence of the normalized spontaneous decay
rates behaves in a similar way as in Figure 2 but with its
value being generally closer to one.

In Figure 3, we gradually reduce the lateral sizes of
the rectangular plate while keeping its thickness constant,
and compare the resulting spontaneous decay rates with
that for an infinite slab. The permittivity is set equal to
ε(ωA) = 1.1+i10−8 – a value which is very close to one (cf.
Fig. 2). For lengths of the lateral sides comparable to the
atomic transition wavelength, the infinite slab approxima-
tion starts to differ noticeably from the linear Born expan-
sion (see the figure, case of dx = dy = 3λA), which in this
situation is regarded as a good and nondegrading approx-
imation. As the lateral sizes of the plate decrease further
and become smaller than λA, the infinite-slab approxima-
tion fails completely (see cases of dx = dy = 0.4λA and
0.2λA in the figure). In other words, while a rectangular
plate with lateral sizes much larger than the atomic tran-
sition wavelength can be more or less treated as an infi-
nite slab, care should be taken when the sizes are reduced
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Fig. 3. The same as in Figure 2 but for different sizes of the
rectangular plate: dx = dy = 3λA (dashed line), 0.4λA (dotted
line), and 0.2λA (dash-dotted line). In the last case, the plate
is actually a cube. The curves for an infinite planar plate are
shown by solid line and χε = 0.1 + i10−8.

to about or below a wavelength. This happens for both
normal and parallel to the surface dipole moment orien-
tations. When the rectangular plate can be roughly re-
garded as an infinite slab, the infinite-slab curve and the
linear Born expansion curve agree better when the atom
is placed closer to the surface (compare dashed and solid
curves in Fig. 3).

The dash-dotted curve in Figure 3a for an atomic
dipole moment oriented parallel to the xy-surface demon-
strates an unusual phenomenon which is completely ab-
sent in infinitely extended systems. Namely, the sponta-
neous decay is suppressed even in the close-to-the surface
limit zA/λA � 1. For dipole moments oriented normal to
the xy-surface, only a reduction of the spontaneous-decay
enhancement is observed [Fig. 3b]. The strong enhance-
ment of the spontaneous decay near the surface of infi-
nite slabs is often explained as being due to the coupling
of the atom to the evanescent waves whose amplitudes
are large around the surface and exponentially decrease
away from it [1]. These evanescent waves propagate along
the surface. When the slab has a finite size, we speculate
that the evanescent waves are reflected, at least partially,
when encountering a boundary, giving rise to interference
effects that lead to the suppression of the spontaneous de-
cay mentioned above. When the lateral size of the slab is
reduced even further, numerical computations confirm the
fact that the spontaneous decay rates tend to that in free
space [cf. Eqs. (15)–(17)].

Besides the dependence on the lateral sizes, whether a
rectangular plate can be treated as an infinitely extended
one clearly depends on its thickness as well. When the ma-
terial absorption is negligible, it is intuitively obvious that
even for plate lateral sizes much larger than the atomic
transition wavelength, the plate cannot be treated as ex-
tending to infinity if its thickness is comparable with the
lateral sizes. In Figure 4, we compare the dz-dependence
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Fig. 4. Plate-thickness dependence of the spontaneous decay
rate of an excited atom located near an infinitely extended pla-
nar plate (solid line) and a rectangular plate (dx = dy = 10λA,
dashed line) of equal χε = 0.1 + i10−8. The atomic position is
fixed at (0, 0, 0.2λA) in the main figure, and (0, 0, 5λA) in the
inset.

of the spontaneous decay rate for a rectangular plate with
that for an infinite slab. The agreement between the two
curves, being very good for sufficiently thin plates, grad-
ually worsens with an increasing plate thickness. The dis-
agreement is already noticeable at dz ∼ λA – a value which
is still much smaller than the lateral sizes dx = dy = 10λA,
and it sets in earlier for Γ⊥ than for Γ ‖. The two calcu-
lations predict quite different large-thickness limits. This
means that in the case of thick plates, one must take into
account the boundary conditions in the lateral directions
in order to obtain reliable results.

Account of the boundary conditions in the lateral di-
rections also gives rise to some curious beating in the dz-
dependence of the spontaneous decay rate, which is espe-
cially visible when the atom has a dipole moment oriented
parallel to the surface and is situated somewhat away from
the surface (see Fig. 4, inset). Let’s have a closer look at,
say, the decay rate for a dipole oriented parallel to the
surface. In the limit of an infinite plate dx, dy → ∞, Γ ‖
in Eqs. (16) becomes

Γ ‖

Γ0
� 1 +

3kA

16
Im

[

χε

∫ dz

0

dza2(qz)qze
2iqz (1 + i)2

]

. (18)

As a function of z/λA, the integrand in equation (18) has
a period of 1

2 . Since this period is z-independent, the re-
sulting integral must exhibit oscillations with the same
period, as confirmed by Figure 4, solid curves. These oscil-
lations survive for plates of finite lateral extensions (Fig. 4,
dashed curves). The beating clearly arises from the finite
values of dx and dy. Note that as a function of z, the
inner integrands in equation (16) have a ‘period’ that is
z-dependent and that increases with increasing z.

Next we turn to elucidating the influence of the bound-
aries in the x- and y-directions on the spontaneous de-
cay rates. As can be seen from Figure 5, where an edge
is present at xA = 5λA, the decay rates exhibit oscilla-
tions near the boundary with a particularly strong mag-
nitude right on either side of it, and damping tails. The
oscillations are more pronounced for a dipole moment
oriented parallel to the (xy)-plane than for a z-oriented
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Fig. 5. Effects of the presence of a boundary in the x-direction
on the spontaneous decay rate of an excited atom located near
a rectangular plate of permittivity ε(ωA) = 1.5 + i10−8 and
dimensions dz = 0.2λA and dx = dy = 10λA. The atom is
located at (xA, 0, 0.01λA).

dipole moment. One can notice that when the projection
of the atomic position on the xy-plane lies outside and suf-
ficiently far from the boundaries, the spontaneous decay
rate approaches one in free space, as it should.

In summary, using the Born expansion of the Green
tensor, we have considered the decay rate of an atom lo-
cated near a plate of rectangular shape. We have shown
that a rectangular plate can be treated as extending to
infinity only when its lateral sizes are much larger than
the atomic transition wavelength, its thickness sufficiently
small, and the atom is located close enough to the plate
surface. The smallness of the lateral size of the plate may
lead to an inhibition of the spontaneous decay even when
the atom is located very close to the surface – in con-
trast to the strong enhancement observable in infinitely
extended systems. We have also shown that a boundary
in the lateral directions can give rise to significant modifi-
cations of the decay rate in either side of it. The first-order
Born expansion remains quite reliable even at a value of
permittivity as high as 1.5. Inclusion of higher-order terms
would allow one to investigate more dense media.

H.T.D. thanks S.Y. Buhmann and D.-G. Welsch for enlight-
ening discussions. We are grateful to J. Weiner for a critical
reading of the manuscript. This work has been supported by
the Ho Chi Minh city National University and the National
Program for Basic Research of Vietnam.

Appendix A: Derivation of equations (15)

For an atom located near a rectangular plate, the decay
rates (14) read as

Γ ‖(⊥)

Γ0
= 1 +

3k3
A

8π
Im

{

χε

∫ 0

−dz

dz

∫ dx
2

− dx
2

dx

∫ dy
2

− dy
2

dy

×
[

a2 + (b2 − 2ab)
1
u2

(x − xA)2

(z − zA)2

]

e2iq

}

. (A.1)

The integrand in equation (A.1) contains the exponen-
tial function exp(2iq), which oscillates with the phase 2q,

where

q = kA

√
(x − xA)2 + (y − yA)2 + (z − zA)2. (A.2)

According to the idea of the stationary phase method,
which relies on the cancellation of sinusoids with rapidly-
varying phase, the main contribution to the integrals is
from the region where the phase is stationary

∂q

∂x
= 0, (A.3)

∂q

∂y
= 0, (A.4)

∂q

∂z
= 0, (A.5)

which, for q determined as in equation (A.2), imply

x − xA = 0, (A.6)
y − yA = 0, (A.7)
z − zA = 0. (A.8)

The condition (A.8) cannot be fulfilled because the atom
is located outside the plate: z < 0 while zA > 0. For the
conditions (A.6) and (A.7) to be satisfied, it is required
that − dx

2 ≤ xA ≤ dx

2 and − dy

2 ≤ yA ≤ dy

2 . Since the main
contribution to the integrals is for values of x and y about
xA and yA, respectively, one can write

q � kA|z − zA|
[

1 +
(x − xA)2

2(z − zA)2
+

(y − yA)2

2(z − zA)2

]

= qz +
k2
A(x − xA)2

2qz
+

k2
A(y − yA)2

2qz
, (A.9)

where qz = kA|z − zA|.
Substituting x = xA and y = yA in the nonoscillating

factor in front of the exponential in the integral, using q
as in equation (A.9) in the exponential, and changing the
variable z to −z, we arrive at equations (15).
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